Mostrando entradas con la etiqueta Razones Trigonometricas. Mostrar todas las entradas
Mostrando entradas con la etiqueta Razones Trigonometricas. Mostrar todas las entradas

martes, 19 de agosto de 2008

Razones Trigonometricas de un Angulo en Posicion Normal

• Ángulo en Posición Normal :
Llamado también ángulo en posición canónica o estándar; es aquel ángulo trigonométrico cuyo vértice coincide con el origen del sistema cartesiano, su lado inicial coincide con el semieje positivo de abscisas y su lado se ubicará en cualquier región del plano, siendo el que indique a que cuadrante pertenece dicho ángulo. En el gráfico adjunto por ejemplo : a, b y q son ángulos en posición normal, cumpliéndose: a Î IC; b Î IIC; q Î IIIC.
• Ángulos Cuadrantales
Se va a denominar ángulo cuadrantal a aquel ángulo en posición normal cuyo lado final coincide con cualquiera de los semiejes cartesianos. Las medidas de estos ángulos es siempre múltiplo de 90º.
Estos ángulos no pertenecen a cuadrante alguno (fig. 1)

• Ángulos Coterminales
Son aquellos ángulos en posición normal que tienen el mismo lado final; y su diferencia de medidas es siempre múltiplo de 360º. (fig.2).
• Definición de las razones trigonométricas de un ángulo en Posición Normal
Para definir o hallar las R.T. de un ángulo en posición normal; se debe conocer un punto perteneciente a su lado final.
En el gráfico; para "a"; tendremos: Por ejemplo:
Se debe notar que ahora las R.T. pueden tener signo negativo; dependiendo del cuadrante en el que se ubique el ángulo considerado.

* Signos de las R.T.
Dependiendo del cuadrante en el que se ubique un ángulo en posición normal; podemos establecer el siguiente criterio práctico para los signos:
* Propiedad
Las Razones trigonométricas de los ángulos coterminales son respectivamente iguales.

* R.T. de los Ángulos Cuadrantales
Las R.T. de los ángulos cuadrantales principales se calculan con las mismas definiciones aplicadas a cualquier ángulo en posición normal. El resultado se muestra en el siguiente cuadro: